Optimal Neural Net Compression via Constrained Optimization

نویسندگان

  • Miguel Á. Carreira-Perpiñán
  • Yerlan Idelbayev
چکیده

Compressing neural nets is an active research problem, given the large size of state-of-the-art nets for tasks such as object recognition, and the computational limits imposed by mobile devices. Firstly, we give a general formulation of model compression as constrained optimization. This makes the problem of model compression well defined and amenable to the use of modern numerical optimization methods. Our formulation includes many types of compression: quantization, low-rank decomposition, pruning, lossless compression and others. Then, we give a general algorithm to optimize this nonconvex problem based on a penalty function (quadratic penalty or augmented Lagrangian) and alternating optimization. This results in a “learning-compression” algorithm, which alternates a learning step of the uncompressed model, independent of the compression type, with a compression step of the model parameters, independent of the learning task. This algorithm is guaranteed to find the best compressed model for the task under standard assumptions. It is simple to implement in existing deep learning toolboxes and efficient, with a runtime comparable to that of training a reference model in the first place.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model compression as constrained optimization, with application to neural nets. Part II: quantization

We consider the problem of deep neural net compression by quantization: given a large, reference net, we want to quantize its real-valued weights using a codebook with K entries so that the training loss of the quantized net is minimal. The codebook can be optimally learned jointly with the net, or fixed, as for binarization or ternarization approaches. Previous work has quantized the weights o...

متن کامل

Multi-objective optimization of geometrical parameters for constrained groove pressing of aluminium sheet using a neural network and the genetic algorithm

One of sheet severe plastic deformation (SPD) operation, namely constrained groove pressing (CGP), is investigated here in order to specify the optimum values for geometrical variables of this process on pure aluminium sheets. With this regard, two different objective functions, i.e. the uniformity in the effective strain distribution and the necessary force per unit weight of the specimen, are...

متن کامل

Project Scheduling with Simultaneous Optimization, Time, Net Present Value, and Project Flexibility for Multimode Activities with Constrained Renewable Resources

Project success is assessed based on various criteria, every one of which enjoys a different level of importance for the beneficiaries and decision makers. Time and cost are the most important objectives and criteria for the project success. On the other hand, reducing the risk of finishing activities until the predetermined deadlines should be taken into account. Having formulated the problem ...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Constrained Nonlinear Optimal Control via a Hybrid BA-SD

The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018